Wiki Categories

Model Evaluation

FP Rate

In statistics and machine learning, when performing multiple comparisons, a false positive ratio is the probability of falsely rejecting the null hypothesis for a particular test. The false positive rate is calculated as the ratio between the number of negative events wrongly categorized as positive (false positives) and the total number of actual negative events.

To learn more.

Explorium delivers the end-game of every data science process - from raw, disconnected data to game-changing insights, features, and predictive models. Better than any human can.
Request a demo
We're Hiring! Join our global family of passionate and talented professionals as we define the future of data science. Learn More