More resources you might like

In this 2020 wrap-up, we polled our in-house experts, drawing together their tips and insights for the end of the year and for what's to come in 2021.

In this brand new guide, you’ll discover the key business benefits of switching to a data science platform, whether to buy or build your own, and top tips for calculating your TCO.

Are your KYC processes streamlined enough to get the answers you need, fast? Or are valuable customers dropping off before you get the chance to onboard them?

Do you have enough data to get the insights you need? And if not, how can you fill the gaps? In part one of this series, we dive deep into auditing, discovery, and acquisition.

In part two of our series, we cover ETL, data wrangling, and data enrichment so you can ensure your data is ready to give you the insights you need.

Part three of our series gets technical with an in-depth look at the best ways to split your data for training, different testing methodologies, feature engineering, and monitoring.

Creating a data science team is about so much more than tracking down the right job titles or developing the right algorithms. Find out the key roles you need to build a rock star data science team.

The current credit scoring model is outdated and in need of an upgrade. Read how to go about building a smarter, more accurate credit scoring model - and the data you need to do so.

How can marketers leverage all their data for better predictive insights? It’s all about knowing what you need, how it can help, and the right platforms and tools that can help achieve your goals.

In our interconnected, globalized world, it’s harder and harder to track the weak spots in your supply chain. That’s why we created this handy guide to understanding and mitigating supply chain risk.

Why are we still hung up on BI? It’s time to embrace a paradigm that empowers us to make smarter, better predictions using real data with machine learning.

It’s no secret that while most organizations understand the importance of machine learning, most initiatives never make it off the ground. Follow this guide to guarantee you make it to production.

There’s no one way to start using data science. This guide walks you through the pros and cons of each approach and discusses how to allocate your budget efficiently.

In this in-depth guide, we reveal the real reasons your machine learning risk models are falling short, what you can do to fix them — and exactly how to tackle the problem.

Making your training data better is much easier than you think, and you can use several easy strategies for quick wins.

ML has gone from buzzword to business necessity, and implementing it is quickly becoming mandatory. Here are 6 easy steps to follow to get going with the resources you have.

Your organization’s risk management strategies are going to need a major overhaul. Insights from your historical data simply won’t be enough to help you assess the risks that are coming your way.

If the current economic crisis has shown the business world anything, it’s that no amount of data analysis can prepare you for the event of having the financial market flipping upside down.

In these increasingly uncertain times, marketing leaders who start thinking data science-driven will not only stay ahead of the pack but also keep their organizations afloat.

How can you earn yourself a seat at the table when decisions are being made? It starts with making yourself accessible and invaluable. Read how you can get started now.